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Abstract

This paper describes techmques to compute matrix

inverses by means of algorithms that are highly suited

to massively paralJel computation. In contrast, conven-
tional terhniques such as pivoted Gaussia.u elimination

and LU decomposition are efficient only on vector com-

puters or fairly low-level parallel systems.

These techniques are based on an algorithm suggested

by Strassen in 1969. Variations of this scheme employ
matrix Newton iterations and other methods to improve

the numerical stability while at the same time preserving

a very high level of parallelism. One-processor Cray-2

implementations of these schemes range from one that

is up to 55% faster than a conventional library routine
to one that, while slower than a library routine, achieves

exceBent numerical stability.

The problem of computing the solution to a single

set of linear equations is discussed, and it is shown that

shown that this problem can also be solved emciently

using these techniques.

Introduction

The problem of efficient machine computation of lin-

ear equation solutions and matrix inverses for dense sys-
tems was recently considered to be solved. One needed

only to apply one of the well-kno_"a reduction tech-

niques, such as Gauss-Jordan elimination, LU decompo-
sition, or the like (Press 1986, 20-70). The performances

of a wide variety of scientific computers performing such

operations are available in listings such as Dongarra's

LINPACK results (Dongarra 1987).

However, the recent development of very highly paral-

lel systems, with the prospect of massively parallel sys-
tems in the near future, is forcing researchers to take a

second look at these techniques. The problem is that

traditional schemes do not seem to be conducive to

highly parallel computing. For instance, a linear equa-
tion solution of an n x n system using a Ganss-Jordan

elimination scheme with partial pivoting requires

1. n searches for the maximum entry in the current

column.

2. n interchanges of rows to place the pivot element

on the diagonal.

3. n divisions of the row containing the pivot by the

pivot element.

4. n reductions of the rows by the pivot row.

5. An unscrambling of the columns of the matrix (if a

true inverse is desired).

Of these operations, only item 4 admits any parallelism

beyond a single row or column vector (i.e., O(n) pro-

cessors). Purther, the row and column operations are

often very short vector operations. Item 1 is singularly

ill-suited for highly parallel evaluation. It follows that

an implementation of this algorithm on a highly parallel

system (i.e., O(n 2) processors) would idle large numbers

of processors for a significant fraction of the time.
Adaptations of these traditional algorithms suitable

for efficient highly parallel evaluation may eventually be

found. However, it is at least as likely that these algo-

rithms are hopelessly unsuited for such systems. In any

event, it appears that completely different approaches

to this problem need to be considered.

Strassen's Algorithm for Matrix Multiplication

The fact that matrix multiplication can be performed

with fewer than 2n s arithmetic operations has been

known since 1969, when V. Strassen published an al-

gorithm that asymtotically requires only about 4.7n zs°r

operations (Strassen 1969). Since then other such algo-
rithms have been discovered (Kreczmar 1976, Pan 1980

and 1984). Currently the best known result is due to

Coppersmith and Winograd (1987), which reduces the



exponent of n to only 2.38. Until recently, however, such

advanced algorithms for matrix multiplication were con-

sidered to be academic curiosities with no hope of practi-

cal application (see for example Press 1986, 74-76). In-

deed, it was estimated at the time Straasen's paper was

published that the "crossover point _ of his algorithm
(i.e., the size of a square matrix for which Strassen's al-

gorithm would run faster than the traditional method)
was well over 1,000 (Gentleman 1987).

Strassen's algorithm for matrix multiplication is as

follows. Let the matrices A, B, and C = A× B be
divided into haLf-sized blocks:

[ Au At' I [ Bu B,, I [ Cu C,, ]A21 A_2 Bn Bn = C_1 C_2

Then the resuit may be calculated as follows:

P, = (A,_+ A_,)(B,_+ B,,)
1'2 = (An + A**)Bu

P3 = Au(BI2- B22)

t'4 = As_(B_I - Bu)

Ps = (Au +Au)B22

Ps = (As,- AI,)(B,_+ B,_)

P, = (A,2 -- A,s)(B,a + B,_)

Cu = PI+P4-Ps+P,

C_2 = P_ + Ps

C,_ = p_ + p,

C_2 = P_+ Ps- P2+ Ps

It should be pointed out that the intermediate matrices

PI,P_," ",Pr may all be computed concurrently. The

last four lines may also be computed concurrently, but

their cost is generally insignificant compared to the pre-
vious seven lines.

The computational savings of employing Strassen's al-

gorithm derives from the fact that only seven haLf-sized

matrix multiplications need to be performed, whereas

eight are required with the standard algorithm. Thus

for fairly large matrices, where the cost of performing

this algorithm is dominated by the cost of multiplying

the half-sized blocks, a savings of approximately 14%
can be realized (in theory) over the traditional method.

Strassen's method can of course be recursively em-
ployed to multiply the half-sized blocks, and so on down

to individual matrix elements if desired. For every level

of recursion, an additional 14% savings can be realized.

However, in practice this recursion is only performed

down to the level at which the losses due to bookkeep-

ing costs and short vector lengths overwhelm any savings

due to fewer floating-point operations being performed.

On the Cray-2, for example, this crossover point was
found to be for matrices of size 128 × 128.

Each level of recursion alto multiplies the number of

concurrently executable tasks by seven. Thus when even

as few as four levels of recursion are employed, thou-

sands of independent tasks are generated. Once tasks

axe smaller then the crossover point, each individual task

still has substantial amounts of parallelism. For exam-

ple, using the traditional scheme for matrix multiplica-
tion, each of the 16,384 result elements of a 128 × 128

operation can be computed concurrently. Therefore this

method has almost unlimited parallelism; it is appar-

ently limited only by the capacity of the particu/ar inter-

connection network to support the necessary data move-
ment (Gentleman 1978).

Other details of practical implementations of

Strassen's matrix multiplication algorithm may be found
in Bailey (1987).

Strassen's Algorithm for Matrix Inversion

Not nearly as well known as Strassen's algorithm for

matrix multiplication is a related algorithm for matrix

inversion, which appeared in the same paper. This al-

gorithm can be described as follows. Let the matrices A

and C = A -x be divided into half-sized subblocks:

Asa A22 = 0,I Cn

Then the result C may be calculated as follows:

PI = A?_

P3 = An × P,

Ps = P1 x Al2

P4 = A21 x Ps

Ps = P. - A22

P. = p,-_

Cl_ = Ps × P6

C21 = Ps x P,

Cu = P1- Ps x Cn

C2s = -Ps

These steps, for the most part, cannot be performed

concurrently. However, for a large matrix there is

enough work within each step to admit massively par-

allel computation. In particular, the computation re-

quired to perform this algorithm at a certain level is

dominated by the cost of the six matrix multiplications,

which can of course be performed by Strassen's matrix

multiplication algorithm. The two matrix inversion op-

erations in the above can be performed by recursive ap-
plication of this same method. It can easily be seen that



withjusta few levels of recursion, almost all real work

is square matrix multiplication.

That this technique is faster than conventional tech-

niques even in a one-processor implementation can be
seen in Table 1, which contains some Cray-2 perfor-

mance figures for matrices containing Gaussian pseudo-
random data. In this table, the columns headed

"tray Library" contain finn,tea for Cray's MINV routine.
MINV is coded in assembly language and is very highly

optimized for the Cray-2 -- it runs at 300 MFLOPS

or more on a single processor. The columns headed

"Strassen" contain figures for a recursive implementa-

tion of Strassen's algorithm as above, with matrices of
sizes 128 x 128 or smaller performed with MINV. The

timings shown are the means of ten runs on a single pro-
cessor, with a normal backg,ound of other jobs on the

three remaining processors. The error statistics are the

geometric means of the root-mean-square (RMS) errors
for the ten runs. The B_MS error E for a single trial is

computed as

where B is the product of the computed inverse with

the original matrix and I is an n x n identity matrix.

Actually, the results in the Cray Library columns were

obtained by using a spedal version of MINV that does

not perform determinant calculations. For these large

matrices, even the extremely large dynamic range of the

Cray-2 (10 :t:2'4ss) is insufficient, and floating-point over-
flows result when determinants are calculated. In ad-

dition to this modification, a matrix to be inverted by

MINV is first copied into an array with an odd first dl-
mension. This avoids the substantial performance loss

that otherwise results from bank conflicts when a matrix

whose size is divisible by a power of two is accessed by

rows.

While the timings listed in Table I are very encourag-

ing, the error statistics indicate that the Strassen routine
is not as numerically stable as MINV, which employs

Gauss-Jordan elimination with partial pivoting. Indeed,

[or large matrices the Strassen inverse scheme is only ac-
curate to about seven digits (on the average), even when

full 14-digit arithmetic is employed. This may be suffi-
cient for some applications known to be highly stahle,

but for other appLications it is unsatisfactory.

A Pivoted Version of the Strassen Matrix Inverse

Algorithm

The principal reason for the mediocre accuracy statis-

tics of the Strassen inverse scheme is that the algorithm

as described above first attempts to invert the upper left

rt/2 x n/2 matrix. If this block is well-conditioned, then

a fairly accurate full-sized inverse will be produced. If

this block is near-singular, then the accuracy of the full-

sized inverse will be poor. If this block is singular, the

method will fail.

This analysis suggests that a pivoted version of
Strassen's scheme would exhibit greater stabiLity. In-

deed, if the full-sized matrix is wall-conditioned, then

either the upper left corner block or the lower left cor-
ner block must be well-conditioned. If the lower left

comer block is well-conditioned, then the inverse of the

full-sized matrix may be computed by a variant of the

Strassen matrix inverse algorithm, as follows:

P2 = A,,xPI

Ps = P,x An

P_ = A**xP3

P, = P4 - A,,

Ps = pfl

C,s = P, x Ps

C,, = Ps x P,

C,, = P, - Ps x C,,

C2s = -Ps

This suggests the following alternate scheme for ma-

trix inversion: compute the inverse and determinant of

both the upper left and lower left blocks, and proceed
with the variant of the Strassen algorithm corresponding

to the block with the largest determinant. The determi-

nant of a block may be easily computed along with the

inverse as a part of either variant of Strassen's inverse

algorithm, as follows. First note that

I °lI -A21A[* I A2t Aa:

I -A?,IA120 A:,- A,,A{_A*, ]

As a result, one can calculate

det(A[_)det[An A,,] = det(A,,-A,,A[_A1,)A2, A,,

Thus itfollowsthat

[Au An] = det(A,,-A,tA[_A1,)det(Au)det A,, An

By a happy coincidence, the two matrices indicated in

the last line are exactly equal (except for sign) to the two

matrices whose inverses are computed in the first variant



oftheStrasseninversealgorithm (see the formulas for

Pl and Ps). A similar result holds for the second varia"t.

The determinant of the hi2 × n/2 block can be calculated
by recursive application of this same procedure.

At the bottom level of recursion, Crsy's MINV can

be used to obtain both the inverse and determina"t,
since calculation of the determinant of a 128 × 128 or

smaller block does not overwhelm the machine precision.
One way to avoid floating-point overflow in the recurrive

calculation of larger determinants is to take the square

root of the product of the determ/nants before passing
the result to a higher level.

While the determinant is for most problems a sat-

isfactory measure of condition, other easily computed

statistics can saso be used. For example, a simple en-
hancement of the determinant calculation is to normal-

ize it by the maximum entry of the block, or by the

sum of the absolute values of the entires. This prevents
such pathologies as a block consisting of a small constant

times the identity being rejected because its determinant
is smaiL

Employing Newton Iterations to Enhance Preci-
sion

The precision of the results may be further enhanced

by employing matrix Newton iterations. A quadratic
Newton iteration is defined as

x.+_ = (2I. - X.A)X.

where Xk is an approximation to the inverse of A. It

ca- be easily shown that for suitable choices of a sta.q-

ing matrix Xo, the iterates Xh converge quacLraticsaJy
to A (Pen and Reif 1985). This means that each iters-

tion approximately doubles the number of correct dig/ts

in the entries of Xs. Higher order Newton iterations

ca" saso be defined that exhibit m-th order convergence
(Ferguson 1987). In the following, however, quadratic
Newton iterations will be implied.

One very attractive feature of matrix Newton iters-

tions is that they are massively pnrallelizable, since they
involve only matrix multiplications and matrix subtrac-

tions. The matrix multiplications ca" of course be effi-

ciently performed using Strnssen's algorithm. However,

the total cost of computation is quite high. One New-

ton iteration applied to a fall-sized matrix alone requires
twice the number of floating-point operations as is nor-

msa]y required to compute the inverse using a classical

technique such as Gauss-Jordan elimination. Nonethe-

less, its suitability for parallel processing may well over-

come this disadvantage on a massively parallel system.
There are several ways that Newton iterations can be

employed in conjunction with Strassen's inversion sago-
rithm. One is to simply apply one Newton iteration to

the final result of a pivoted Strassen scheme. Another

is to apply a Newton iteration to the result st each level

of recursion except the highest level. As it turns out,

this increases the total computational requirement only

fractionally, yet it significantly increases the accuracy of
the result. Finally, one can apply a Newton iteration to

each level of recursion including the highest level.

Tables 2 and 3 contain detailed results of Cray-2

runs employing the above schemes. The column headed

"MINE" contains results for Crsy's MINV, with the

modifications described above (i.e. no determina"t cal-

culation, end the input matrix is copied to an stray

with an odd first dimension before referencing MINV).
MINS is a "no-frills _ implementation of Strassen's basic

matrix inverse algorithm. MINX is the pivoted version,
employing both variants of the Strassen algorithm and

determinant calculations. MINY in addition employs

one Newton iteration at each level of recursion (except
the highest level) to refine the accuracy of the interme-

diate results. MINZ also employs a Newton iteration

at the highest level. As before, the CPU times are the

mesas of the run times (in seconds) of ten trills, and
the error statistics are the geometric means of the RMS
errors of the ten trials.

It can be seen from the table that both MINS and

MINX have faster run times than MINC. Even MINY,

which employs Newton iterations at alJ levels except the
highest, still is only slightly slower than MINC. MINZ

requires more than twice as much CPU time (on a single

processor) as MINC. The accuracy statistics, however,

indicate a steady progression of improvement among the

four new schemes. MINY is almost as good as MINC,

and MINZ appears to be on a par with or slightly better
than MINC.

Solution of a Single Set of Linear Equations

One objection often raised in the discussion of ma-

trix inversion is that most applications of matrix tech-
niques only require the solution of a single set of linear

equations. For this case standard reduction methods

can produce the solution in about one third the time

required for a fall matrix inversion followed by matrix-
vector multiplication.

However, even this problem can be efficiently solved

by the application of the above techniques. Let Az -- b

denote a set of linear equations. Let A1x,A1_,A22,A_2

be the four hsaf-sized sections of A, and let zl,z_,bl,b_

he corresponding halves of z and b. Then the system



Matrix

Size CPU Time I

128 0.0214

200 0.0796

256 0.1373

400 0.5394

512 1.0498

800 3.8273

1024 8.1224
1600 30.0079

2048 62.0103

Cray Library
Error

1.50E-13

2.87E-13

1.69E-13

3.37F,-13

3.91E-13

9.46E-13

8.55F_,-13

1.67F_,-12
1.52E-12

Sit.sen Time

CPU Time] Error Ratio
0.0231 1.50E-13 0.926

0.0652 4.58E-11 1.221

0.1208 6.28E-12 1.137

0.4372 3.95E-10 1.234

0.7866 3.68E-09 1.335

2.9879 6.87E-09 1.281

5.5440 1.40F,-07 1.465

22.0779 1.53E-07 1.359

39.9997 3.59E-07 1.550

I_rror

I_tio

1.00E 0

6.26E-3

2.69E-2

8.53E-4

1.06E-4 1

1.38E-4

6.10F,-6
1.10E-5

4.24E-6

Table 1:Cray-2 Strassen Algorithm Performance Results

Size MINC MINS MINX

128 0.0214 0.0231 0.0205

200 0.0796 0.0652 0.0748

256 0.1373 0.1208 0.1315

400 0.5394 0.4372 0.5060

512 1.0498 0.7866 0.9227

800 3.8273 2.9879 3.6127

1024 8.1224 5.5440 6.6607

1600 30.0079 22.0779 25.9482

2048 62.0103 39.9997 47.8864

MINY MINZ

0.0216 0.0223

0.0739 0.1709

0.1377 0.3159
0.6969 1.4261

1.3203 2.5881

5.7284 10.7166

10.5752 19.6775

43.1163 78.9089

79.4194 146.5576

Table 2:Cray-2 CPU Times for the Five Algorithms

Size

128

200

256

400

512

800

1024

1600

2048

MINC MINS

1.497E-13 1.497E-13

2.869E-13 4.584E-11

1.687E-13 6.277E-12

3.371E-13 3.952E-10

3.914E-13 3.679E-09

9.462E-13 6.870E-09

8.551E-13 1.402F,-07

1.674E-12 1.529E-07

1.522E-12 3.587E-07

MINX

1.497E-13

8.341E-12

6.503E-12

1.085E-I0

1.082E-10

4.315E-09
4.677E-09

7.343E-08

5.280E-08

MINY

1.497E-13

8.341E-12

6.503E-12

1.769E-11

1.217E-11

2.757E-I0

9.911E-11

8.913E-I0

1.778E-09

MIN

1.497E-13

1.192E-13

6.253E-14

1.944E-13

1.964E-13

7.626E-13

6.030E-13

1.937E-12

1.535E-12

Table 3:Cray-2 Error Statistics for the Five Algorithms



maybesolved as follows:

Auzl + Al=zs = bl

A_1=1 +Asszs = b=

=l -- A_(bl - A12=2)
(A_s - A=IA?_AI,)== = b=- AsiA_llbl

and this system may be solved by recurslvely applying
the same algorithm. Once =2 is obtained, =i can be com-

puted from the t_.ird Line. Note that at a given level of

recursion, the only items that have significant cost are
the two matrix multiplications *-d one matrix inversion

in the left-hand side of the last line. These operations

may be e_ciently performed by applying Strassen's ms-

trix multiplication algorithm and one of the matrix in-

version algorithms discussed above. The expression on

the right hand side of the last llne has virtually no cost
for large n, since its only operations are one matrix

subtraction and one matrlx-vector multiplication. Sire-

ilarly, the cost of computing zl once z= is obtained is

insignificant when n is large. The overall cost of solving

a linear system using this method is only slightly more
than one third of the cost of inverting the full-sized ms-
trix.

Conclusion

Four variations of Strassen's matrix inversion have

been described, each of which is highly suited for mas-

sively parallel computation. Each of the four has dif-

ferent CPU time/accuracy characteristics. They range

from a routine that is 55% faster than traditional meth-

ods, even on a one-processor system, to a routine that

achieves exce//ent numerical stability in addition to re-

taiuing its suitability for massively parallel computation.
These methods can also be applied to obtain an e/_cient
solution of a single linear system.

There are obviously many more combinations of these

techniques, some of which have been suggested in this

paper. Higher order Newton iterations could also be

explored, although it did not appear that the higher

order methods would be cost-effective for the variations
tried in this study.

Due to the very high level of parallelism inherent in

these algorithms, it is believed that they will be partic-

Ltlarly effective on highly parallel systems. Clearly the

only way to decide such issues is to try such techniques

on highly parallel systems and compare them with con-

ventional matrix techniques. It is hoped that some par-

allel experiments of this sort can be performed during
the next year.
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